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The alumina evaporation process (AEP) is an indispensable step for the reuse of sodium aluminate solution by evaporating excess water contained in
the solution. The selection of optimal operating parameters is a complicated task because the process is influenced bymany nonlinear factors when
both the quality and quantity of the product are concerned. In this paper, we formulate a multi-objective optimization model to maintain the
balance of operating costs and energy efficiency in AEP, and a multi-objective state transition algorithm (MOSTA) is proposed for solving this
problem. With the aim of solving the constrained multi-objective problem, a search archive strategy of elite populations and a novel infeasible
solution replacement mechanism are integrated into STA. Some infeasible solutions with better performances are allowed to be saved and
participate randomly in the evolution to select optimal solutions from all possible directions. Amutation operator is introduced into the evolutionary
process to enhance the global search ability. Simulation results from some benchmark test problems show that the proposed method tends
to converge quickly and effectively to the true Pareto frontier with better distribution. The proposed algorithm is successfully applied to solve the
multi-objective optimization problem arising in AEP. The optimal results show that operating costs and energy loss are considerably reduced, by
approximately 13.63% and 13.39%, respectively.
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INTRODUCTION

The alumina production process[1,2] includes dissolving
aluminum-bearing minerals in a caustic soda solution to
prepare a sodium aluminate solution. Aluminumhydroxide

is obtained from the sodium aluminate solution by decomposition,
and then filtered and roasted to obtain alumina. The remaining
mother liquor from the filtration process needs to be evaporated
and reused to dissolve a batch of new aluminum-bearingminerals.
The alumina evaporation process (AEP) is an indispensable
step in which excess water is evaporated with the help of high-
temperature and high-pressure steam. To keep the solution
concentration in balance, adequate energy (i.e., live steam) must
be continually supplied. A total of 22.47% of the energy in the
whole alumina production process is consumed in the evaporation
process.[3] Therefore, there exists industrial significance in achiev-
ing operational optimization in the evaporation process to reduce
the cost of live steam consumption, improve energy efficiency, and
ensure the quality of the outlet mother liquor.

The AEP is an energy-intensive process with complex energy
efficiency relations and many interacting factors.[2] There exists
strong coupling between the mother liquor and the vapour steam
from the multiple-effect evaporators. The production costs and
energy utilization of AEP are affected by the temperature,
concentration, and quantity of the mother liquor and by the
temperature and pressure of the live steam at both the inlet and
outlet of the evaporators. Ji[4] studied the influence of different
operating parameters on evaporation plant sub-models, with the
main objective of minimizing plant energy costs. Khanam[5]

studied the effect of operating parameters on the steam
consumption per tonne of evaporated water (SCPTEW), and a
mixed integer nonlinear programming model was presented to
schedule production and cleaning operations in a sugar plant with
performance decay.[6] Chai[7] established amathematical model of

an evaporation system using a state-space formulation with
multiple time delays, and optimized the SCPTEW using particle
swarm optimization (PSO),[2] where the objective is to find a
control law such that the specific quality of the mother liquor is
met with the least energy usage, and the constraints imposed on
the state and the control are satisfied. Although the optimization of
AEP has enabled energy-saving or cost-saving techniques, it does
not take into account operating costs and energy efficiency
simultaneously, which can lead to unreasonable usage of high-
quality energy or inadequate production capacity. To solve these
problems, the optimization of both operating costs and energy
efficiency in AEP is necessary.

The optimization problem in AEP is subject to the concentration
of the outlet solution, production capacity, and other process
requirements. The operating parameters to be optimized, such as
the pressure and flow rate of the live steam as well as the
temperature and flow rate of the feedmother liquor, have complex
nonlinear relationships with the optimization objects and con-
straints, which lead to a narrow feasible solution space. Therefore,
this is a challenging issue for solving the complex optimization
problem with constraints (CMOP) in AEP. It is essential to find an
effective method to find a set of optimal operating parameters
satisfying the production requirements.

As a heuristic search paradigm, evolutionary algorithms (EAs)
maintain a population of potential solutions to achieve the global
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search, and this approach has numerous advantages in finding the
Pareto optimal set for multi-objective optimization problems
(MOPs). Since the pioneering attempt of Schaffer to solve
MOPs,[8] many types of multi-objective evolutionary algorithms
(MOEAs) have been proposed and widely used in different
applications.[9–10] Based on different selection mechanisms,
Coello[11] classified MOEAs into three categories: aggregating
functions, population-based approaches, and Pareto-based
approaches. The aggregating functions combine multiple objec-
tives into a single scalar value.[12–13] By repeating the evolutionary
process for a given number of iterations with different settings of
the aggregating function, the whole trade-off surface can be
obtained.[14] However, the difficulty of selecting the appropriate
weight for each objective remains its main disadvantage.
The population-based approaches attempt to separate multiple
objectives during the evolution by diversifying the search.
A number of sub-populations are generated by performing
proportional selection for each objective function in turn. The
main disadvantage of this approach is that it cannot be directly
incorporated into the selection process of the algorithm.[11] Most
MOEAs are Pareto-based approaches, which incorporate the
Pareto optimality into their selection mechanism. The representa-
tive methods of this approach have the rank-based fitness
assignment method of genetic algorithms,[15] the niched Pareto
genetic algorithm (NPGA),[16] the non-dominated ranking genetic
algorithm (NSGA)[17] and its classical improved version
NSGA-II,[18] the micro-genetic algorithm,[19] the Pareto archive
evolution strategy (PAES),[20] the strength Pareto evolutionary
algorithm (SPEA)[21] and its improved version SPEA2,[22] the
incremental multi-objective evolutionary algorithm (MOEA),[23]

and the MOEA based on decomposition techniques.[24–25]

In addition to the traditional EAs, other evolutionary meta-
heuristics have also been proposed andused to successfully solve the
MOPs, such as Scatter Search (SS),[26–27] Particle Swarm Optimiza-
tion (PSO),[28–30] Differential Evolution (DE),[31–33] and others. By
combining different ideas ormeta-heuristics, the proposed algorithm
may further improve the effectiveness of methods in order to
overcome the inherent limitations of a single evolutionary algorithm
or meta-heuristic. Nebro[27] proposed a hybrid scatter search for
MOPswhich combines the archive strategy,mutation operators, and
crossover operators from evolutionary algorithms to find the Pareto
frontier. Coello[28] also incorporated the external population by the
mechanismof adaptivemesh into themulti-objective particle swarm
optimization, which presented a new particle update strategy
through the mutation of the particle itself and the search range.
The mutation scale of the particle is proportional to the population
size to avoid premature convergence and to maintain diversity.
Computational results showed that the MOPSO is very competitive
with the MOPs.

Conversely, with the significant growth of using EAs for con-
strained optimization problems (COPs) in recent decades, many
different constraint handling techniques have been proposed.[34–37]

Michalewicz and Schoenauer[34] classified constraint handling
techniques by EAs into four categories: preserving the feasibility of
solutions, penalty functions, separating feasible from infeasible
solutions, and hybrid methods. These methods differ in how to
handle infeasible individuals throughout the search process. The
penalty function method is the most widely used, but it strongly
depends on the selection of the penalty parameters. To address this
limitation, somenovelmethods are proposedbasedon thepreference
of feasible and infeasible solutions. Deb[38] proposed a tournament
selection operator to devise a penalty function approach that does
not require any penalty parameter. Mezura-Montes and Coelle[39]

presented a simple multi-membered evolution strategy. The
approach uses a simple diversity mechanism to allow infeasible
solutions to remain at a certain probability in the population, which
ensures that it can quickly find the global optimal solution in a
reasonably feasible region of the search space.
Although the MOPs and constraint handling techniques have

received much attention, the CMOPs are still challenging in
practice when considering the constraints of the technological
process. Wang[32] designed a hybrid DE algorithm using the
simplex method (SM-DEMO) for bauxite grinding-classification
operation. The proposed algorithm is formed by combining the
simplexmethod and an elite populationmechanism to ensure that
some infeasible solutions with better performances are allowed to
take part in the evolutionary process. The mechanism of the
functionally partition is intended to find an optimal solution from
all possible directions.
Inspired by the successful search strategies and constraint

handling techniques applied in previous research, in this paper,
based on the specific industrial background of AEP, we establish a
multi-objective optimization model to ensure the best perform-
ance of the operating parameters in AEP, and a multi-objective
state transition algorithm (MOSTA) is proposed for solving real-
world MOPs. Based on its special operators, the basic STA has
better performance for solving high-dimensional and nonlinear
single objective optimization problems compared with classical
GA and PSO. As a result, we extend this algorithm to solve the
multi-objective optimization problem arising in AEP. The main
contributions and novelty of this paper can be summarized as
follows: Firstly, we introduce a novel stochastic optimization
algorithm, the state transition algorithm (STA),[40] in which the
four special operators, including rotation, translation, expansion,
and axesion, are designed for the requirements of solving
continuous optimization problems concerning global and local
searches. Second, apart from using STA as the search engine,
MOSTA also presents a search archive strategy based on Pareto
non-dominated ranking of the elite population to select optimal
solutions in a candidate set, and it introduces a new state transition
operator and mutation operator to enhance the global search
ability and maintain the diversity of the solution candidates.
Experimental results have demonstrated the effectiveness of the
proposed algorithm. Finally, MOSTA is successfully applied to the
optimization of AEP by combining a novel infeasible solution
replacementmechanismwithmulti-objective optimization. To the
best of our knowledge, this is the first time that a multi-objective
version of STA is proposed and applied to continuous MOPs.

OPTIMIZATION MODEL OF THE AEP

Alumina Evaporation Process

A typical industrial AEP, which transfers the heat of high-
temperature and high-pressure steam to a sodium aluminate
solution to remove excess water by using an evaporator and other
heat transfer devices, is shown in Figures 1–2.
The process consists of four falling film tube evaporators, three

direct pre-heaters, and three flash evaporators.[2] The feed mother
liquor discharged from the filtration process is pumped to the IIIrd
and IVth evaporators through a feeding pump, and the output
liquid coming from the IVth evaporator is pumped into the IIIrd
pre-heater and then goes into the IIIrd evaporator after being
heated close to its boiling point. In the same way, the feed mother
liquid goes into the IInd and Ist evaporators in sequence, and then
the liquor coming from the Ist evaporator is pumped into the 1st,
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2nd, and 3rd flash evaporators in sequence because of the
differential pressure. Finally, the final mother liquor is output
through pumping. The new steam first passes into the Ist
evaporator, and then vapour coming from the different evapo-
rators is pumped into the next evaporator. Vapour coming from
the 1st, 2nd, and 3rd flash evaporators is pumped into the Ist, IInd,
and IIIrd evaporators, respectively. Vapour evaporated by the
condensate tanks is pumped into the evaporator for re-utilization.

As described in the Introduction section, the optimization
objective of AEP is to fully use the current device’s handling ability
to control the pressure and flow rate of the live steam and the
temperature and flow rate of the feed mother liquor, and to
regulate the temperature distribution of the process to satisfy the
concentration requirements of the final mother liquor and to
minimize both operating costs and energy loss efficiency.
Although energy-saving equipment such as flash evaporators
and pre-heaters can be added to reduce steam consumption, they
are not always helpful. The reason why these energy-saving
devices fail is mainly due to operator error. This leads to problems

such as unqualified mother liquor, excessive live steam con-
sumption, and low energy efficiency when applied in an actual
industrial process. Therefore, it is necessary to establish an
optimization model for the effective regulation of operating
parameters in AEP.

Optimization Model of AEP based on the Exergy Evaluation Index

Although the optimization problem of AEP has received much
attention, the existing solutions do not simultaneously take into
account the operating costs and energy efficiency. Optimizing
both of these can bring higher economic benefits in the actual
evaporation process. Thus, in this section, we build a multi-
objective optimization model of AEP by introducing the exergy
evaluation index into the optimization model of Zhu.[2] The
definitions of the indices, decision variables, and parameters are
listed in the Nomenclature section. These definitions will be used
for the model of the AEP.

Considering the exchange of energy and material from the
mother liquor and the steam flow, the AEP can be treated as a
steady-flow open system that satisfies a balance of material and
energy. Based on the material and mass balance principles, the
mass of solute input into the ith unit equals themass of solute going
out of the ith unit. Thus, the formula of the material balance is
described as follows:[2]

FiC
j
i ¼ ðF0 þ F01ÞCj

0; i ¼ 1;:::;6; j ¼ 1; 2; 3 ð1Þ

F7C
j
7 ¼ F0C

j
0; j ¼ 1; 2; 3 ð2Þ

Fi ¼ fi ðQi; ri;Ti;Tr; cpi;HiÞ; i ¼ 1;:::;7 ð3Þ

wherefið�Þ represents the ith function relationshipbetweenFiand the
operating variables (for a detailed description, see Equations (1–5)
in theoptimizationmodel ofZhu[2]). Basedon thedata collected from
a whole-acid cycle of AEP under different scarring conditions at the

Figure 2. Flow schematic of an AEP.

Figure 1. The evaporators in AEP.
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China Aluminum Corporation, ri; cpi; hi; Hi; and Tni were deter-
mined by a regression method. Their definitions are as follows:

cpi ¼ 4:18� ð2:994C
1
i þ 2:923C2

i þ 3:266C3
i Þ

ri
; i ¼ 0;:::;7 ð4Þ

ri ¼ 1045þ 0:8C3
i þ 1:2C2

i þ 0:8C1
i ; i ¼ 0;:::;7 ð5Þ

hi ¼ Hi � 4:18ðTni � TrÞ; i ¼ 0;:::;7 ð6Þ

Hi ¼ 2019:4þ 1:741Tni � 0:002 128 ðTni � TrÞ2 ; i ¼ 0;:::;7 ð7Þ

Tni ¼ 0:77Pi þ 282:68P0:064
i þ 81:22P0:3037

i þ 262:1 ð8Þ

Exergy is a physical quantity that describes both energy quality
and quantity, and it represents the ability to transform energy into
useful work. Considering the strong coupling between the mother
liquor and the steam flow andmulti-heat sources from each unit in
the AEP, the energy balance of the AEP system can be regarded as
the combination of a series of exergy balance models based on the
energy flow direction.

In general, the formula of the exergy balance is described as
follows.

Exin1 � Exout1 ¼ ðExout2 � Exin2Þ þ he ð9Þ

where he is the loss of exergy in AEP.We can see that the exergy of
the cool fluid can increase from Exin2 to Exout2, and the exergy of
the thermal fluid can decrease from Exin1 to Exout1. Hence, the
exergy balance model of each unit has the following equations.

(1) The exergy balance equations of the flash evaporators from
units #1–3 are shown as follows:

ETi ¼ Fiþ1 riþ1 emiþ1 ¼ Vi evi þ Firi emi þ he;Ti; ði ¼ 1;2;3Þ ð10Þ

whereETi is the total exergy input into the i
th unit, and hi is the loss

of exergy from the ith unit.

(2) The exergy balance equations of the pre-heaters from units
#4–7 are shown as follows:

EpTi ¼ Fiþ1 riþ1 emiþ1 þ V7�i evð7�iÞ þ Vpievi
¼ ðFiþ1riþ1 þ V7�i þ VpiÞempi þ he;pTi; ði ¼ 4;5;6;7Þ ð11Þ

whereEpTi is the total exergy input into the ith unit, andhpi is the loss
of exergy from the ith unit.

(3) The exergy balance equations of the evaporators from units
#4–7 are shown as follows:

ET4 ¼ ðF5r5 þ V3 þ Vp4Þemp4 þ V0ev0
¼ ðV4 þ Vp4Þev4 þ F4 r4 em4 þ m2 V0 ec
þð1� m2ÞV0en4 þ he;T4 ð12Þ

ET5 ¼ ðF6r6 þ V2 þ Vp5Þemp5 þ V4ev4
¼ ðV5 þ Vp5Þev5 þ F5 r5 em5 þ V4en5 þ he;T5 ð13Þ

ET6¼ðF7r7 þ V1 þ VpiÞemp6 þ V5ev5 þ m2V0ecoi þ F01r0em0
¼ ðVp6 þ V6Þev6 þ F6 r6 em6 þ ðV5 þ m2V0Þen6 þ he;T6 ð14Þ

ET7¼V6 ev6 þF0� F01ð Þ r0 em0 ¼ V7 ev7 þ F7 r7em7 þ V6 en7 þ he;T7

ð15Þ

Then, the exergy balance equation of the AEP system is shown as
follows:

ET ¼ V0 ev0 þ ðF0 þ F01Þ � r0em0
¼ F1 r1 em1 þ V7 ev7 þ ð1� m2Þ � V1 en4
+ V4 en5 þ ðV5 þ m2V0Þen6 þ V6 en7 þ he ð16Þ

Here, F1, Vi and m2 V0 are obtained by a balance computation, evi,
eni and ecoi are obtained by the Szargut environmentmodel,[41] and
emi is obtained by the IAPWS-IF97 model.[42] These parameters
have the following formulas.

ecoi ¼ ðcwTwi � HrÞ � Tr ðswi � srÞ; i ¼ 1; 2; :::; 7 ð17Þ

eni ¼ ðHi � HrÞ � Tni ðsni � srÞ; i ¼ 4; :::; 7 ð18Þ

evi ¼ ðHis � HrÞ � Tis ðsi � srÞ; i ¼ 0; :::; 7 ð19Þ

emi ¼ ðHi � HrÞ � Tr ðsi � srÞ � ðcw � ciÞ

�
Z tmi;pmi

Tr ;pmi

1� Tr

tmi

� �
dT � ðvw � vmiÞ

Z Tr; pmi

Tr; pr
dp ð20Þ

Because the total exergy loss he of the system is absolute, we
cannot compare the utilization degrees of the processes and
devices under different operating conditions.[43] Thus, we use the
exergy efficiency ht of maximum utilization to replace the he of
minimum utilization to evaluate the energy utilization degree.
As mentioned above, the optimization model in AEP has the

following two objectives.

(1) The first optimization objective f1 ðxÞ is to minimize J1, that
is, the mass unit of live steam consumption per tonne of
evaporated water from the mother liquor. As a main energy
source, the live steam is an important indicator to measure
the economic performance of AEP when the conditions of
the pump power consumption are fixed. J1 can be used
to represent the operating costs of AEP, and is defined as
follows.[2]

min f1 ðxÞ ¼ min J1 ¼ D0

W
ð21Þ

whereW is the total water evaporated from the process, andD0 is
the total live steam required by the whole evaporation process.
They are given by:

W ¼ ðF0 þ F01Þ r0 � F1 r1
¼ ðF0 þ F01Þ r0 � F1 ð1045þ 0:8C3

1 þ 1:2C1
1 þ C2

1Þ¼ 1045 ðF0 þ F01 � F1Þ ð22Þ

D0 ¼ k1 A1 Dt1
0:99h0

¼ k1 A1 Dt1

0:99 3161:2� 2:439Tn0 � 0:002 128 ðTn0 � TrÞ2
� � ð23Þ

(2) The second optimization objective f2 ðxÞ is to minimize the
exergy loss efficiency. Less exergy loss efficiency means
higher exergy efficiency ht which ensures that more energy
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can be used in the next process and reduces the energy
consumption of the whole production process. Thus, the
second optimization objective is defined as follows.

min f2 ðxÞ ¼ 1� ht ¼ 1� ½F1 r1 em1=ðV0 ev0 þ F0 r0 em0Þ� ð24Þ

where ev0, em0, and em1 are obtained by substituting i¼ 0,1 into
Equations (19,20).

For an actual industry process, many operating parameters of
the optimization model cannot change over a large range due to
the constraints imposed by the energy balance, material balance,
and production conditions, such as the required live steam
pressure P0, condenser pressure Pm, effective temperature differ-
ence of the evaporator Dti ði ¼ 4; :::; 7Þ; flow of the feed mother
liquor passing into jth unit F0,j, and concentration of the mother
liquor output C2

1. Therefore, the constraints of the optimization
model are formulated as follows:

C2
1;:min � C2

1 � C2
1;:max

P0;min � P0 � P0;max

Pm;min � Pm � Pm;max

F01;min � F01 � F01;max

Qi � kziSiDti i ¼ 1; :::; 7

Dti � 5 i ¼ 4; :::; 7

Vi;min � Vi � Vi;max i ¼ 4; :::; 7

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð25Þ

where F01,min, F01,max represent the lower and upper bounds of
the feed mother liquor flow passing into the 6th unit, respectively.
Qi can be calculated by the following formulas:

Q4 ¼ ð1� hlossÞ½V1 H1 � ð1� m2ÞV0Tn4cpi � m2V1Hc�
Q5 ¼ ð1� hlossÞ½V4 H4 � V4Tn5cpi�
Q6 ¼ ð1� hlossÞ½V5 H5 þ m2V1Hc � ðm2V1 þ V5ÞTn6cpi�
Q7 ¼ ð1� hlossÞ½V6 H6 � V6Tn7cpi�

ð26Þ

In summary, the optimization problem of the AEP can be
described as follows.

Based on the optimization model of AEP, we need to find a group
optimal solutionof decisionvariablesF01,Pm,P0,T0,Dti ði ¼ 4; :::; 7Þ
so that the operating costs (Equation (21)) and the energy loss
efficiency (Equation (24)) are minimized, and constraint
Equations (25) are satisfied by substituting Equations (4–8)
into Equations (3,17–20,26).

Now, as a typical nonlinear multi-objective optimization
problem including complex equality and inequality constraints,
the optimization model of AEP is hard to solve using traditional
optimization methods.

CONSTRAINED MULTI-OBJECTIVE STATE TRANSITION

ALGORITHM (CMOSTA)

Basic State Transition Algorithm

Resembling the concepts of state transition and state space
representation in probability theory and control theory, a solution
to an optimization problem is considered a state, and the process of
updating the current solution is considered a state transition.

In general, the unified form of a state transition algorithm can be
described as follows:[40]

xkþ1 ¼ Ak xk þ Bk uk

ykþ1 ¼ f ðxkþ1Þ

(
ð27Þ

where xk 2 Rn stands for a state corresponding to a current
solution to the optimization problem; Ak 2 Rn�n and Bk 2 Rn�m

are state transition matrixes with appropriate dimensions, which
are usually regarded as transformation operators for the opti-
mization algorithm; uk is a function of xk and historical states; and
f ðxkþ1Þ is the objective function or evaluation function.

To solve the continuous optimization problems, four special
state transformation operators are designed.[40]

Rotation transformation

xkþ1 ¼ xk þ a
1

nkxk k2 Rr xk ð28Þ

where a is a positive constant called the rotation factor; Rr 2 Rn�n

is a random matrix with its entries belonging to the range of
[�1,1]; and k �k2 is the 2-norm of a vector.

Translation transformation

xkþ1 ¼ xk þ bRt
xk � xk�1

kxk � xk�1 k2 ð29Þ

where b is a positive constant called the translation factor and
Rt 2 Rn�n is a randomvariablewith its components in the range of
[0, 1]. The translation transformationwill be performed onlywhen
a better solution is found.

Expansion transformation

xkþ1 ¼ xk þ gRe xk ð30Þ

where g is a positive constant called the expansion factor and
Ra 2 Rn�n is a random diagonal matrix with its entries obeying
Gaussian distribution.

Axesion transformation[44]

xkþ1 ¼ xk þ dRa xk ð31Þ

where d is a positive constant called the axesion factor and Ra 2
Rn�n is a random diagonal matrix with its elements obeying the
Gaussian distribution and only one random index having a
nonzero value.

The basic procedure of STA can be described in the following
pseudocode:

1: repeat

2: if a < amin then

3: a amax

4: end if

5: best  ExpansionðPS ðiÞ; SE; b; gÞ
6: best  RotationðPS ðiÞ; SE; a;bÞ
7: best  AxesionðPSðiÞ; SE;b; dÞ
8: a a=fc

9: until the specified termination criterion is met.
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Here, best is obtained as the optimal incumbent solution by using
the “greedy criterion.” SE is the number of samples, called search
enforcement. Detailed explanations of these operators can be
referred to Zhu.[44]

As a stochastic optimization algorithm, compared with classical
GA and PSO, the STA has better performance in terms of global
search ability and convergence accuracy.[44–47] However, consid-
ering the requirements of actual AEP problems, we next propose a
multi-objective STA to solve the optimization problem arising in
AEP.

MOSTA Algorithm for Unconstrained MOPs

In general, a multi-objective optimization problem (MOP) can be
defined as follows:

min F ðXÞ ¼ min½f1 ðXÞ; f2ðXÞ; :::; fr ðXÞ�
such that giðXÞ � 0; ði ¼ 1; 2; :::; pÞ
hjðXÞ ¼ 0; ðj ¼ pþ 1; :::; qÞ
Xk 2 ½Xmin;Xmax�; ðk ¼ 1; 2; :::; nÞ

ð32Þ

where F (X) is the objective vector; X ¼ ðx1; x2; :::; xnÞ 2 Rn is a
decision vector; gi ðXÞ is the ith inequality constraint; hj ðXÞ is the jth
equality constraint; and Xmin and Xmax are the lower and upper
bounds of the decision variable Xk, respectively.

Next, we provide some fundamentals on Pareto optimality.
Assuming X ¼ ½x1; x2; :::; xn�T and Y ¼ ½y1; y2; :::; yn�T are two
decision vectors, X is said to dominate Y (denoted as X � Y) if and
only if f i ðXÞ � f i ðYÞ 8i 2 f1; 2; :::; kg and 9j 2 f1; 2; :::; kg
f j ðXÞ � f j ðYÞ. A decision vector X	 is said to be Pareto optimal
if and only if there exists no X in the decision space such
that X � X	. The set of all Pareto optimal vectors is called the
Pareto optimal set (denoted as P	), and correspondingly, the set
of all of the Pareto optimal objective vectors is called the
Pareto frontier (denoted as PF	), which is defined as
PF	 ¼ fF ðX	ÞjX	 2 P	g

To efficiently select the true or near-optimal Pareto frontier of
real-world MOPs, the proposed MOSTA is different from STA in
the following three points.

Archive strategy of multi-population based on Pareto
non-dominated ranking

On the basis of the above STA, many new populations are
combined with the existing parent population to achieve the
archive strategy of the elite population. Firstly, the size of
the samples for state transition operators will be set as
SE; another middle population for non-dominated Pareto
optimality will be set as PB; and the population for storing
the Pareto optimal set will be set as PS. The individual number
of the population PS will remain unchanged and be set as
num. Each individual in PS will go through state transition
operators.

The specific research strategies are as follows.
Step 1 Set the search enforcement of the state transition algo-

rithm as SE. The optimal solution search population PS is evenly
generated under random initialization, and the number of
the population is set as num. Meanwhile, initialize the search in
the intermediate population PI¼ 0, PJ¼ 0, and the Pareto set
population PB.

Step 2 Each individual in PS will go through state transition
operators. The specific operations for each individual of PS (i)are
given as follows:

best  ExpansionðPS ðiÞ; SE; b; gÞ
best  RotationðPS ðiÞ; SE; a; bÞ
best  AxesionðPS ðiÞ; SE; b; dÞ

Next, we describe the operator search in detail, taking the
expansion operator as an example:

(1) Make SE copies of PS (i) and carry out an expansion
operation for each individual; the result is newpop

(2) Calculate the fitness value of each individual of newpop and
make a Pareto non-dominated ranking of ½newpop; PS ðiÞ�;
and the individuals sorted as 1 are put into the intermediate
population PI. Assign the value of a random Pareto solution
to best.

(3) xk�1  PS ðiÞ; xk  best; make SE copies of PS ðiÞ and best,
and carry out a translation operation for each individual; the
result is newpop 1.

(4) Calculate the fitness value of each individual of newpop 1 and
carry out a Paretonon-dominated ranking of ½newpop1; PS ðiÞ�;
the individuals sorted as 1 are put into an intermediate
population PI. Assign the value of a random Pareto solution to
best.

Step 3 Perform a state transition operation for all individuals in
PS, and combine the result PI, PJ with PB to obtain an intermediate
population PM by Pareto non-dominated ranking. Reassign values
to PS and PB: assign the first num individuals of PM to PS, then
PS ¼ PM ð1 : numÞ; put PM1, the individual set with 1 Pareto degree
inPM into PB, and set PI ¼ 0; PJ¼ 0; PM¼ 0. If the iteration does not
terminate, go to Step 2 for searching.

Improvement of STA operators

In the actual optimization process, when the values of all variables
are close to 0, the rotation operator will fall into a potential well.
For example, if x(k)¼ [0,0], doing a search simulation of the
rotation operator, if a¼ 1, after doing 105 times repetitive search,
we obtain the value of x(kþ 1) shown in Figure 3a (here, a circle
shows x(kþ 1), the result of every search of point x(k)).
To overcome these shortcomings, the improvement of operators

is done as follows:

xkþ1 ¼ xk þ a
1

nkxkk2 Rrðxk þ wÞ ð33Þ

where w is a smaller positive constant. It has been verified that if
w ¼ 0:0001, it is able to jump out of the potential well shown in
Figure 3b (the black circle represents point xðkÞ; and black dots
represent xðkþ 1Þ; the result of every search).
As shown in the Basic STA, the translation operator only

searches along x(k)�x(k�1) in the positive direction. To improve
the search ability of the translation operator, we expand the value
of Rt 2 Rn�n from [0,1] to [�1,1], and make it a bidirectional
search range along the axis. The search range of the improved
transition algorithm is shown in Figures 4a–b.

Introduction of mutation operator

To avoid the STA algorithm falling into a local optimum in the
multiple population search process, we introduce a mutation
operator in the section, as shown in Equation (34).

xkþ1 ¼ xk þ RcerandiðLp� xk; Up� xkÞ ð34Þ
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where Rce 2 Rn�1is a vector with its elements obeying a uniform
distribution in the range of [0, 1]. Lp, Up are the lower and upper
bounds of the variable value, respectively. Lp� xk is the
expansion towards the lower bound, taking xk as a starting point.
Up� xk is the expansion towards the upper bound. randi is the
random expansion towards the lower or upper bounds. The
mutation operator will be able to randomly search in the whole
domain of definition. To avoid slowing down the search due to
excessive mutation, set the number of iterative times of the
mutation operator to be divisible by 50; if individuals of the kth

generation population PS and the kþ 1th generation population PS
are the same, execute the mutation operator.

MOSTA with Constraint Handling Strategy for CMOP

The space S of the constrained multi-objective optimization
problem (CMOP) can be divided into the feasible solution space
(denoted asV) and the infeasible solution space (denoted as Z), as
shown in Figure 5, where xi (i¼ 1,2,3,4) is the feasible solution
and yi (i¼ 1,2,3,4) is the infeasible solution. Assume that x	 is
the global optimal solution and y1 is the closest one to x	. If
the infeasible solution y1 is not excluded by the algorithm, it may
explore the boundary regions from new directions where the
optimum is likely to be found. It is necessary for CMOP to properly
use its infeasible solutions.

Constraint handling strategy based on the multi-objective method

As mentioned in the Introduction section, researchers have
gradually realized the merit of infeasible solutions in searching

for the global optimum in the feasible region by trying to save and
utilize those infeasible solutions with better performances.[48]

Lin[49] formulated an adaptive evolutionary strategy to ensure that
infeasible solutions with slight violations can be reserved with the
adaptive proportion of the population to find optimal solutions
from all possible directions. Based on this idea, we propose a
constraint handling strategy based on the multi-objective method,
which is a novel infeasible solution replacement mechanism that
saves infeasible solutions with better performance and allows
them to participate randomly in the subsequent evolution, so as to
avoid constructing a penalty function and deleting meaningful
infeasible solutions directly.

Figure 3. (a) Rotation operator falling into a local potential well. (b) Improved rotation operator search range.

Figure 4. (a) Unidirectional search of translation operator. (b) Bidirectional search of translation operator.

Figure 5. Distribution diagram of the search space.
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The detailed description of the constraint handling strategy is as
follows. For the optimization problem of Equation (32), we
reconstruct an unconstrained optimization problem with two
types of objectives. The first type of objectives is objective FðXÞ in
the original problem, and the other is the constraint violation
degree of individual GðXÞ: First, equality constraints are trans-
formed into inequality constraints as hjðXÞ

�� ��� m � 0; where j ¼
pþ 1; :::; q and m is a positive tolerance value. Hence, the
constraint violation degree of individual X on the ith constraint
is calculated as follows.

GiðXÞ ¼
maxf0; gi ðxÞg; ði ¼ 1; 2; :::; pÞ
maxf0; hi ðxÞj j � mg; ði ¼ pþ 1; :::; qÞ

(
ð35Þ

Then, the individual violation degree of all constraint conditions
is G(X):

GðXÞ ¼
Xq
i¼1

Gi ðXÞ ð36Þ

If G(X)¼ 0, it means that the individual is a feasible solution
satisfying all of the constraint conditions. If G(X)> 0, the
individual is an infeasible solution. The larger GðXÞ is, the larger
the individual violation degree will be.

Due to the constraints having different properties in type,
dimension, and characteristics, we need to standardize the
violation degree of every constraint and obtain Equation (37):



GðXÞ ¼ 1

q
�
Xq
i¼1

Gi ðXÞ
Gimax

ð37Þ

whereGimax is themaximumvalue of the violation degree of the ith

constraint, and q is the total number of constraints.
To take advantage of the infeasible solutions with better

performances, we adaptively determine the proportion of the
infeasible solutions to be reserved and save the iterative solutions
according to the following rules.

1) Among two feasible solutions ~X; ~X
0
; the one that has a better

objective function value


GðXÞ is preferred

2) Among two infeasible solutions ~X ; ~X
0
; the one that has a

smaller degree of constraint violation


GðXÞ is preferred

3) Assume that ~X is a feasible solution and ~X
0
is an infeasible

solution; if


Gð~X0 Þ � e; then Fð ~X}Þ < FðXÞ; ~X}will ~X

0
be

preferred. Otherwise, ~X will be preferred

where e is the threshold of the constraint violation degree. The
larger the value of e, the higher the proportion of the infeasible
solution in the optimal solution.

To maintain the proportion pc of the infeasible solution, the
value of e is adjusted adaptively according to the following
formula.

e0 ¼
1:2 	 e; PK < PC

0:8 	 e; PK > PC

e; Other

8><
>: ð38Þ

where pk is the average proportion of the infeasible solution for
each K generations during the evolution process.

pk ¼
Xk	KþK

i¼k	Kþ1
Ni

 !
=ðK � numÞ; k ¼ 0; 1; 2; :::; n ð39Þ

whereNi is the number of infeasible solutions in the ith generation,
and num is the number of the population in each generation.
The proposed constraint handling strategy can be applied to

solve the COPs well to ensure searching for the optimal solutions
continuously.

Framework of the proposed hybrid algorithm

To solve CMOP in AEP, the above proposed constraint handling
strategy is integrated into MOSTA. The integration makes MOSTA
come out with multiple groups of functional partitions. These
partitions include an evolutionary population PS of size num,
an intermediate population PI of size num1 to save feasible
individuals, an intermediate population PJ of size num2 to save
infeasible individuals, a population PB to save the optimal
feasible solution found in the search process, an intermediate
population PM of size num3 to save the best individuals from PI,
and an intermediate populationPM1of size num3 to save the best
individuals from PJ to select optimal solutions from all possible
directions. The relationship of the multi-population is shown in
Figure 6.
The detailed description of the proposed algorithm follows.
Step 1 (Initialization). Generate the populations PS; PB; PI ; PJ ;

PM, and PM1; then set the values of Gmax (the number of function
evaluations), K (the generation of evaluation by adaptive fix the
value of e), num (population size), SE (the number of search
population individuals), e (the maximum constraint violation
degree), g ¼ 1 (the current generation number), and a, b, g, d
(operation index). Randomly generate the parent population PS of
size pop from the decision space, set the PB, and let the
intermediate populations PI and PJ be empty.
Step 2 (Mutation Operator). If the number of iterations is

divisible by 50, and the kth generation PS are the same as the kþ1th
generation PS, the mutation of the parent optimal population PS
can be obtained by executing themutation operator. Otherwise, go
to Step 3 directly.
Step 3 (Strategy of MOSTA). For every individual of population

PS, we carry out the STA. Here, the improvement of the rotation
operator and translation operator will be used from the Improved
STA operators section. For every individual of PS (i) carry out the
search strategy in the Archive Strategy of Multi-population
section, and then we can obtain the intermediate population PI
and PJ.

Figure 6. Relationship diagram of multi-population.
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Step 4 (Strategy of CMOSTA). To calculate the individual
violation degree of the intermediate population in the Archive
Strategy of Multi-population section, the feasible and infeasible
solutions will be non-dominated ranked by the constraint
handling strategy, and we obtain the new intermediate popula-
tions PM and PM1.

Step 5 (evolution or termination). If g < Gmax; then g¼ gþ 1,
and go to Step 2. Otherwise,make the best populationPB part of the
Pareto optimization set P	, and output P	.

ALGORITHM SIMULATION AND ANALYSIS

Example Validation

Evaluation criteria

Unlike single-objective optimization, solution quality evaluation
in the case of multi-objective optimization is more complicated.
Criteria to evaluate multi-objective optimization algorithms
can be categorized as two types: evaluating the convergence
degree by computing the proximity between the solution
frontier and the actual Pareto frontier; and evaluating the
distribution degree of the solutions in the objective space by
computing the distances between the individuals. Here,
we choose both criteria to evaluate the performance of the
CMOSTA.

(1) Convergence Evaluation CE: The extent of convergence to a
known Pareto optimal set.[18]

CE ¼ 1
Q

XQ
i¼1

minkP	 � PFTk
 !

ð40Þ

where P	 is the obtained non-domination Pareto frontier, PFT is
the real non-domination Pareto frontier, kP	 � PFTk is the
Euclidean distance of P	 with PFT, and Q represents is the
number of obtained solutions.

(2) Distribution Degree Evaluation: The non-uniformity in the
distribution is measured by SP as follows:[18]

SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Q� 1ð Þ

XQ
i¼1

�d� di
� 	2vuut ð41Þ

where di represents the Euclidean distance among consecutive
solutions in the obtained non-dominated set of solutions and
parameter �d is the average distance.

Experimental study

In this section, we choose four problems, CTP1, SRN, TNK, and
BNH, to test the proposed method, as shown in Table 1. We
compare the method with the classic NSGA-II.[18]

The simulation environment was an Intel Pentium 4, 3.06 GHz
CPU, 4 GB Memory, Windows XP Professional, Matlab 7.1. The
parameters are initialized as follows: the size of population PS is
num¼ 100, number of search population SE¼ 10 maximum
evolution generation Gmax ¼ 200; and crossover operator is
20, a¼ 1, b¼ 1, g ¼ 1; d ¼ 1. The adaptive generation of
evaluation is K ¼ 5, maximum of constraint violation degree
e ¼ 0:8, NSGA-P population size pop1¼ 100, maximum evolu-
tion generation Gmax1¼ 200, and crossover operator setting is 20.
Each algorithm runs 20 times independently for each test
function.

Figures 7a–d are comparison charts between the proposed
algorithm and NSGA-II after a random running of the four test

Table 1. Test function

Test Function
Objective Function

min F (X)¼min[f1 (X), f2 (X)] Constraint Range of Variable

CTP1

f 1 ðXÞ ¼ x1;

f 2 ðXÞ ¼ exp � f 1ðXÞ
cðXÞ

� �

� 41þ
X5
i¼2
½x2i � 10cosð2pxiÞ�

( )
:

g1ðXÞ ¼ cosðuÞðf 2ðXÞ � eÞ � sinðuÞ f1ðXÞ;

g2ðXÞ ¼ a sin
bp½sinðuÞðf 2ðXÞ � eÞ
þcosðuÞf 1ðXÞ�c

( )�����
�����
d

;

g1ðXÞ � g2ðXÞ:

0 � x1 � 1
�5 � x1 � 5 i ¼ 2;3;4;5

SRN
f 1 ðXÞ ¼ 2þ x1 � 2ð Þ2 þ x2 � 1ð Þ2;
f 2 ðXÞ ¼ 9x1 � x2 � 1ð Þ2:

g1 ðXÞ ¼ x12 þ x22;
g2 ðXÞ ¼ x1 � 3x2 þ 10;

g1 ðXÞ � 225 � 0; g2 ðXÞ � 0:

�20 � x1 � 20
�20 � x2 � 20

BNH
f 1 ðXÞ ¼ 4x12 þ 4x22;

f 2 ðXÞ ¼ x1 � 5ð Þ2 þ x2 � 5ð Þ2:
g1 ðXÞ ¼ x1 � 5ð Þ2 þ x22 � 25;
g2 ðXÞ ¼ � x1 � 8ð Þ þ x2 þ 3ð Þ þ 7:7;

g1 ðXÞ � 0; g2 ðXÞ � 0:

0 � x1 � 5

0 � x2 � 3

TNK f 1 ðXÞ ¼ x1;

f 2 ðXÞ ¼ x2:
g1 ðXÞ ¼ �x12 � x22 þ 1þ 0:1 cos 16 arctan x1=x2ð Þð Þ;
g2 ðXÞ ¼ x1 � 0:5ð Þ2 þ x2 � 0:5ð Þ;

g1 ðXÞ � 0; g2 ðXÞ � 0:5 � 0:

0 � xi � p i ¼ 1;2
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functions. ‘�’ are the optimal solutions given by CMOSTA, and
‘•’ is the true Pareto frontier. It is obvious that the proposed
algorithm returns a better approximation of the true Pareto-
optimal frontier and a distribution of higher uniformity. We also
evaluated algorithms based on the two criterions CE and SP. It
can be observed from the data in Table 2 that the proposed
algorithm performs significantly better than the classical NSGA-
II algorithm in convergence and distribution uniformity.
Simulation results show that this algorithm can accurately
converge to global Pareto solutions and can maintain population
diversity.

Industrial Numerical Experiments

In this section, we use industry data of actual AEP to solve the
operating parameters of the optimizationmodel with the CMOSTA
so as to verify its validity.

The operating parameters are initialized as follows. The heat
transfer areas of the first to third evaporators are Si¼ 1230m2

(i¼ 4,5,6); the fourth evaporator is S7¼ 1600m2; the range of
the condenser pressure is Pm 2 ½0:01MPa; 0:03MPa�; the
pressure of live steam isP0 2 ½0:4MPa; 0:6MPa�; the heat transfer
coefficients of the four evaporators are Qi ¼ 849:7W=m2 � K;
2025W=m2 � K; 829:7W=m2 � K; 721:8W=m2 � K i ¼ 4; 5; 6; 7ð Þ.
Flow limitation of the feed mother liquor flowed into the IIIrd
evaporator is 0–30 t/h, the concentration of the mother liquor
output Xout 2 ½160 g=L; 170 g=L�; and the concentration of feed
mother liquor is 87 g/L. The same parameters of CMOSTA are
omitted here.
Figure 8 is the Pareto frontier of the CMOSTA after running 50

times; the optimal parameters of the evaporation process are
listed in Table 3 (AV is actual practice value, and OR is optimal
value of algorithm); the distribution of optimal temperature
differences in the evaporation process can be represented by a

Table 2. Performance comparison

Test Function Algorithm CE SP

CTP1 NSGA-P 0.021317�0.000323 0.873321�0.08725
CMOSTA 0.014585�0.000261 0.682149�0.02563

SRN NSGA-P 0.011120�0.000753 0.78314�0.02843
CMOSTA 0.009501�0.000406 0.344712�0.01356

BNH NSGA-P 0.014947�0.000632 0.336941�0.00917
CMOSTA 0.012857�0.000231 0.187919�0.00718

TNK NSGA-P 0.013235�0.000740 0.464542�0.00730
CMOSTA 0.008913�0.000168 0.173482�0.00376

Figure 7. (a–d) Comparison charts of Pareto frontier.
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function of optimal outlet mother liquor concentration. Com-
bined with true output data, outlet concentrations of the mother
liquor in every unit obtained by optimization and calculation are
shown in Table 4. It should be noted that the optimal solution
obtained is just the best solution from industrial numerical
experiments so far, since the real Pareto frontier in AEP is
unknown under the conditions of actual alumina production
process.

The results show that the exergy efficient and J1 conflict. If we
want to improve the exergy efficiency, J1 must be reduced.
However, these two conflicting objectives are measured by the
Pareto dominance relation, and they maintain a balance under
the Pareto optimality criterion. The optimal solution shows
that the outlet mother liquor concentration coming from the #1
flash evaporator satisfying concentration requirements of
subsequent process is up to 160 g/L. Similarly, the energy
loss efficiency decreases by about 13.39% compared to the
actual results, as we reduced the mass of live steam used to
evaporate each tonne of water by about 13.63%. Similarly,

when the concentration of final mother liquor satisfied the
requirements, the mass of live steam used to evaporate each
tonne of water was reduced by about 6.16%. Therefore, the
qualification rate of mother liquor has been improved, which is
beneficial to energy saving and emission reduction of the
evaporation process.

Results over 23 days are shown in Figure 9. Comparing
VMPSO optimal results with those of CMOSTA, the live steam
flow of CMOSTA optimization is reduced with an average of
about 0.167 t. Comparing the results obtained by COMSTA with
actual results, the live steam flow is also reduced with an
average of about 0.625 t, which indicates that CMOSTA has
better performance than VMPSO.

CONCLUSIONS

To further save energy and reduce consumption, optimization of
both the operating costs and energy consumption of AEP were
studied in this paper. By introducing the index of exergy
evaluation, we have established an optimization model to
maintain the balance between operating costs and energy
efficiency while satisfying the concentration requirement of
the final mother liquor. As for the complex multiple-objective
optimization problem with constraints, we have proposed a
multi-objective state transition algorithm with a few beneficial
features in which an archiving mechanism and an infeasible
solution replacement mechanism based on multi-objective
optimization are integrated to find optimal solutions from all
possible directions. Moreover, the new state transition operator
and mutation operator are introduced, which aim to direct the
population to approach or land in the feasible region from
different directions during the evolutionary process. Simulation
results on benchmarks and industrial applications indicate that
the proposed algorithm can converge quickly and effectively
to the true Pareto frontier with better distribution, which is
helpful to inspire further research on evolutionary methods for
engineering optimization.

Figure 8. Pareto frontier of CMOSTA optimization.

Table 3. Optimal parameters and production index of the AEP

Item P0 (MPa) F01 (m3/h) Dt4 (oC) Dt5 (oC) Dt6 (oC) Dt7 (oC) J1 (t)

AV 0.58 258.035 30.08 10.43 27.97 19.34 0.402
OR
VMPSO 0.453 0.00 31.68 10.86 25.87 16.38 0.370
CMOSTA 0.446 0.00 30.02 13.89 25.41 17.39 0.3472

Item Pm (MPa) T0 (K) V0 (t) V1 (t/h) ŋt (%) f2 (%)

AV 0.020 339.71 61.17 163.94 59.32 28.40 71.60
OR
VMPSO 0.012 342.95 52.42 169.95 52.42 – –

CMOSTA 0.016 345.92 50.33 160.51 51.48 41.79 58.21

Table 4. Unit concentration of output mother liquor under most-efficiency operations

Unit C2
1 ðg=LÞ C2

2 ðg=LÞ C2
3 ðg=LÞ C2

4 ðg=LÞ C2
5 ðg=LÞ C2

6 ðg=LÞ C2
7 ðg=LÞ

AV 163.94 160.7 156.78 155.7 125.47 110.93 98.49
OR 160.51 159.92 156.41 153.92 124.7 108.84 96.54
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NOMENCLATURE

Ci
i concentration of sodium carbonate components, sodium

hydroxide components, and alumina components re-
spectively from the jth component to the ith evaporator
(kg/m3)

cpi specific heat capacity of mother liquor output from the
ith unit (KJ/kg �K)

ci specific heat capacity of mother liquor from the ith unit
(KJ/kg �K)

cout specific heat capacity of final mother liquor (KJ/kg �K)
cw specific heat capacity of water (KJ/kg �K)
D0 total quantity of live steam (kg)
ecoi exergy of flash steam from condensate to the sixth unit

(J/kg)
emi exergy of the mother liquor output from the ith unit

(J/kg)
empi exergy of the mother liquor output from the ith

preheater unit (J/kg)
eni exergy of the mother liquor output from the ith

evaporator unit (J/kg)
evi exergy of per mass vapour from the ith unit (J/kg)
ev0 exergy of live steam (J/kg)
Fi flow of feed mother liquor put into the ith unit (m3/h)
F01 flow of mother liquor put into the 6th unit (m3/h)
His enthalpy of live steam from the ith flash evaporator to

evaporator (kJ/kg)
Hr enthalpy of water output under (Tr,pr) condition

(kJ/kg)
Hout enthalpy of water output under (tout, pout) condition

(kJ/kg)
Hi specific enthalpy of steam from the ith units under live

steam and P0 conditions (kJ/kg)
hi latent heat of vapour output from the ith unit (kJ/kg)
h0 latent heat of live steam (kJ/kg)

J1 operating cost function
ki heat transfer coefficient of the (i-3)th evaporator

(W/m2 �K)
Pm condenser pressure (MPa)
P0 live steam pressure (MPa)
Pm0 pressure of feed mother liquor (MPa)
Pmi pressure of mother liquor from the ith unit (MPa)
Pout pressure of final mother liquor (MPa)
Qi heat load of the ith evaporator (MPa)
Si heat transfer area of the ith evaporator (m2)
sm0 specific entropy of water output under the (tm0,pm0)

condition (J/mol)
sout specific entropy of water output under the (tout,pout)

condition (J/mol)
sr specific entropy of water output under the (Tr,pr)

condition (J/mol)
sni specific entropy of the ith evaporator under vapour

pressure and Tni conditions (J/(K �kg)
swi specific entropy of the ith evaporator under condensate

pressure and Twi conditions (J/(K �kg)
si specific entropy of steam units under live steam and P0

conditions (J/mol)
T0 temperature of feed mother liquor (K)
Tni temperature of vapour outlet from the ith unit (K)
Twi temperature of flash steam outlet from the ith unit (K)
toi temperature of mother liquor outlet from the ith unit (K)
Tr absolute zero temperature (273K)
Dti effective temperature difference of the ith evaporator (K)
Tisf temperature of the i# flash steam (K)
Tis temperature of live steam from the ith flash evaporator

to evaporator
tmi temperature of mother liquor outlet from the ith unit (K)
tout temperature of final mother liquor outlet (K)
V0 flow of initial live steam (kg/h)
Vi flow of vapour steam output from the ith unit (kg/h)
Vis flow of live steam from the ith flash evaporator to

evaporator
Vi,max maximum velocity of live steam from the ith evaporator

(m3/h)
Vi,min minimum velocity of live steam from the ith evaporator

(m3/h)
vw specific volume of water (m3/kg)
vm0 specific volume of liquid (m3/kg)
vmi specific volume of mother liquor output from the ith

unit (m3/kg)
vout specific volume of final mother liquor outlet (m3/kg)
W total quantity of water evaporated from the mother

liquor (kg)
r0 density of feed mother liquor (kg/m3)
ri density of mother liquor output from the ith unit

(kg/m3)
ht exergy efficiency
he total exergy loss of AEP
hexi exergy loss from internal heat transfer in AEP
hexo exergy loss from external heat transfer in AEP
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